1,247 research outputs found

    Concept for a Time-of-Flight Small Angle Neutron Scattering Instrument at the European Spallation Source

    Full text link
    A new Small Angle Neutron Scattering instrument is proposed for the European Spallation Source. The pulsed source requires a time-of-flight analysis of the gathered neutrons at the detector. The optimal instrument length is found to be rather large, which allows for a polarizer and a versatile collimation. The polarizer allows for studying magnetic samples and incoherent background subtraction. The wide collimation will host VSANS and SESANS options that increase the resolution of the instrument towards um and tens of um, respectively. Two 1m2 area detectors will cover a large solid angle simultaneously. The expected gains for this new instrument will lie in the range between 20 and 36, depending on the assessment criteria, when compared to up-to-date reactor based instruments. This will open new perspectives for fast kinetics, weakly scattering samples, and multi-dimensional contrast variation studies.Comment: 18 pages, 10 figure

    How should we interpret the two transport relaxation times in the cuprates ?

    Full text link
    We observe that the appearance of two transport relaxation times in the various transport coefficients of cuprate metals may be understood in terms of scattering processes that discriminate between currents that are even, or odd under the charge conjugation operator. We develop a transport equation that illustrates these ideas and discuss its experimental and theoretical consequences.Comment: 19 pages, RevTeX with 8 postscript figures included. To appear in ``Non Fermi Liquid Physics'', J. Phys:Cond. Matt. (1997

    High spin polarization in the ferromagnetic filled skutterudites KFe4Sb12 and NaFe4Sb12

    Full text link
    The spin polarization of ferromagnetic alkali-metal iron antimonides KFe4Sb12 and NaFe4Sb12 is studied by point-contact Andreev reflection using superconducting Nb and Pb tips. From these measurements an intrinsic transport spin polarization Pt of 67% and 60% for the K and Na compound, respectively, is inferred which establishes these materials as a new class of highly spin polarized ferromagnets. The results are in accord with band structure calculations within the local spin density approximation (LSDA) that predict nearly 100% spin polarization in the density of states. We discuss the impact of calculated Fermi velocities and spin fluctuations on Pt.Comment: Pdf file with fi

    Subpicosecond time‐resolved studies of coherent phonon oscillations in thin‐film YBa2Cu3O6+x (x<0.4)

    Full text link
    We report the results of the first time‐resolved observation of impulsively generated coherent optical phonon oscillations in the semiconducting cuprate compound YBa2Cu3O6+x (x<0.4). The oscillations, which were probed through time‐resolved transmissivity modulation, had a period of 237 fs at room temperature, corresponding to a Raman active mode of A1g symmetry at 142 cm−1. No oscillations were observed in the superconducting form of Y‐Ba‐Cu‐O either above or below Tc. The amplitude, frequency, and linewidth of this mode were measured over a temperature range from ∼7 K to room temperature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70769/2/APPLAB-58-9-980-1.pd

    The impact of phenotypic and genetic heterogeneity on results of genome wide association studies of complex diseases

    Get PDF
    Phenotypic misclassification (between cases) has been shown to reduce the power to detect association in genetic studies. However, it is conceivable that complex traits are heterogeneous with respect to individual genetic susceptibility and disease pathophysiology, and that the effect of heterogeneity has a larger magnitude than the effect of phenotyping errors. Although an intuitively clear concept, the effect of heterogeneity on genetic studies of common diseases has received little attention. Here we investigate the impact of phenotypic and genetic heterogeneity on the statistical power of genome wide association studies (GWAS). We first performed a study of simulated genotypic and phenotypic data. Next, we analyzed the Wellcome Trust Case-Control Consortium (WTCCC) data for diabetes mellitus (DM) type 1 (T1D) and type 2 (T2D), using varying proportions of each type of diabetes in order to examine the impact of heterogeneity on the strength and statistical significance of association previously found in the WTCCC data. In both simulated and real data, heterogeneity (presence of "non-cases") reduced the statistical power to detect genetic association and greatly decreased the estimates of risk attributed to genetic variation. This finding was also supported by the analysis of loci validated in subsequent large-scale meta-analyses. For example, heterogeneity of 50% increases the required sample size by approximately three times. These results suggest that accurate phenotype delineation may be more important for detecting true genetic associations than increase in sample size

    Low temperature ferromagnetic properties of the diluted magnetic semiconductor Sb2-xCrxTe3

    Full text link
    We report on magnetic and electrical transport properties of Sb2-xCrxTe3 single crystals with 0 <= x <= 0.095 over temperatures from 2 K to 300 K. A ferromagnetic state develops in these crystals at low temperatures with Curie temperatures that are proportional to x (for x > 0.014), attaining a maximum value of 20 K for x = 0.095. Hysteresis below TC for applied field parallel to the c-axis is observed in both magnetization and Hall effect measurements. Magnetic as well as transport data indicate that Cr takes the 3+ (3d3) valence state, substituting for antimony in the host lattice structure, and does not significantly affect the background hole concentration. Analysis of the anomalous Hall effect reveals that skew scattering is responsible for its presence. These results broaden the scope of ferromagnetism in the V2-VI3 diluted magnetic semiconductors (DMS) and in ferromagnetic DMS structures generallyComment: 24 pages, 5 figures, submitted to PR

    Observation of Magnetic Flux Generated Spontaneously During a Rapid Quench of Superconducting Films

    Full text link
    We report observations of spontaneous formation of magnetic flux lines during a rapid quench of YBa2_{2}Cu3_{3}O7δ_{7-\delta} films through Tc_{c}. This effect is predicted according to the Kibble-Zurek mechanism of creation of topological defects of the order parameter during a symmetry-breaking phase transition. Our previous experiment, at a quench rate of 20K/sec, gave null results. In the present experiment, the quench rate was increased to \TEXTsymbol{>} 108^{8} K/sec. Within experimental resolution, the dependence of the measured flux on the cooling rate is consistent with the prediction

    Defect structure of Sb2−xCrxTe3 single crystals

    Get PDF
    Single crystals of Sb2Te3 doped with Cr (cCr=0–6×1020 cm-3) were prepared by the Bridgman method. The measurements of the Hall coefficient reveal a nonmonotonous dependence of hole concentrations on the Cr content in the crystal. The hole concentration decreases at low content of Cr, while at higher content of Cr it increases again. However, according to magnetic measurements, Cr atoms enter the structure and form uncharged substitutional defects CrSb×, which cannot affect the free carrier concentration directly. The observed dependence can be elucidated by means of a point defect model. The model is based on an assumption that defect structure of Sb2Te3 can be treated as hybrid Schottky and antisite defect disorder. Thus, we assume an interaction of CrSb× with the most populated native defects in the structure—antisite defects SbTe-1 and vacancies in the Te sublattice VTe+2
    corecore